
Demystifying the RISC-V Linux
software stack

Nick Kossifidis - Spring 2022 RISC-V Week, Paris

Adding a new arch
on Linux…

Linux is huge !

3

~23 million lines of code and counting

~64k files in the kernel tree

Almost 2.000 developers / release

More than 20.000 developers have contributed so far

A visualisation attempt

4

Comparing /arch to the rest of the kernel

5

/arch -> ~1.7mloc

/{kernel, lib, mm, ipc, init} -> ~0.5mloc

/{block, net, crypto, security, fs} -> ~2mloc

/{drivers, sound} -> ~16mloc

/arch/x86 -> ~290kloc

/arch/arm -> ~272kloc

/arch/arm64 -> ~85kloc

/arch/riscv -> ~23kloc

Under the hood

RISC-V Privilege modes

7

● Mandatory
● The most privileged /

protected mode visible to the
software (there is also Debug
mode but it’s only accessible /
visible to hw debuggers)

● Physical memory addressing
● Physical memory protection
● Trap/Interrupt handling and

delegation

● Optional (depends on
M-mode)

● The least privileged /
protected mode

● Physical/virtual memory
addressing Physical/virtual
memory protection

● No trap/interrupt handling

● Optional (depends on M-mode
and U-mode)

● Sits between M-mode and
U-mode

● Provides virtual memory
addressing / protection

● Trap/interrupt handling through
delegation, managed by M-mode

● May act as a hypervisor (aka
HS-mode) through the use of an
extra set of CSRs, also providing
a second stage of translation /
protection for guests (aka
VS-mode instances)

Machine Mode User Mode Supervisor Mode

The RISC-V Privileged Spec
https://github.com/riscv/riscv-isa-manual/releases

https://github.com/riscv/riscv-isa-manual/releases

RISC-V Virtual memory

8

● 3 level page table for RV32 (Sv32)
● 3, 4, 5 level page tables for RV64

(Sv39/48/57)
● 2nd stage of translation for VS mode

(G-stage), managed by HS mode
● NAPOT encoding available
● Up to 16bit ASID
● SMEP always active
● SMAP controlled by sstatus.SUM bit
● Page-based memory types (Non

Cacheable, I/O) for RV64

Facilities on M-mode

9

Provide infos on the current hardware thread (hart):

● Vendor id (mvendorid), Microarchitecture id (marchid), Implementation id (mimpid)
● Current hart’s id (hartid)
● Available hart extensions (misa, menvcfg)
● Pointer to the configuration structure (mconfigptr) from which we can also generate the device tree

or ACPI tables

Configure hart extensions (misa, menvcfg, mstatus) and security features (mseccfg)

Physical Memory Protection (PMP/ePMP)

Configure profile counters

Fixed-frequency timer (mtime) with the ability to schedule timer interrupts (mtimecmp)

Configure trap and interrupt auto-delegation to S / HS modes

RISC-V Trap and interrupt delegation / mode switching

10

RISC-V Interrupt delivery

11

The old way (SiFive CLINT / PLIC)

● Wired interrupts only, no MSIs
● Shared between privilege modes
● Directly to M-mode and then delegated (so even

S-mode software interrupts go through M-mode)
● No virtualization support

The new way (RISC-V ACLINT / AIA)

● Both wired and MSIs
● Different interrupt settings per privilege mode
● Interrupts delivered to specific privilege modes
● Virtualization support

For more information:
https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aclint
Advanced Interrupt Architecture and Advanced CLINT
Anup Patel, John Hauser - RISC-V Summit 2021
(https://www.youtube.com/watch?v=je9Qr23mclU)

https://github.com/riscv/riscv-aia
https://github.com/riscv/riscv-aclint
https://www.youtube.com/watch?v=je9Qr23mclU

Firmware architecture

12

Supervisor Binary Interface (SBI)

13

Firmware call API
● S-Mode <-> M-Mode
● HS-Mode <-> M-Mode
● VS-Mode <-> HS-Mode

Available services:
● Provide access to M-mode facilities

○ Timer, PMU, hart/imp/vendor IDs…
● Inter-Processor Interrupts (IPI)
● Remote Fence (memory barrier)
● Hart State Management (suspend/resume)
● System Reset
● …

For more information: https://github.com/riscv-non-isa/riscv-sbi-doc

https://github.com/riscv-non-isa/riscv-sbi-doc

RISC-V OS Boot protocol

14

Direct:

● Get Device Tree through a1 gp register
● Get Hart ID through a0 gp register

EFI stub:

● Get Device Tree through EFI Config Table
● Get Hart ID through the device tree’s

chosen/boot-hartid or through the new
RISCV_EFI_BOOT_PROTOCOL

For more information:
Atish Pattra - An introduction to RISC-V Boot flow (RISC-V Summit 2019)
https://www.youtube.com/watch?v=sPjtvqfGjnY
https://archive.fosdem.org/2021/schedule/event/firmware_uor/
https://github.com/riscv-admin/riscv-uefi-edk2-docs
arch/riscv/kernel/head.S
drivers/firmware/efi/libstub/riscv-stub.c

RISC-V Device Tree bindings under Documentation/bindings:
/riscv/cpus.yaml
/interrupt-controller/riscv,cpu-intc.txt
/interrupt-controller/sifive,plic-1.0.0.yaml
/cpu/cpu-topology.txt

https://www.youtube.com/watch?v=sPjtvqfGjnY
https://archive.fosdem.org/2021/schedule/event/firmware_uor/
https://github.com/riscv-admin/riscv-uefi-edk2-docs

Runtime firmware implementations

15

Reference implementation: OpenSBI
Can act as a standalone firmware / first stage boot loader
Can be used as a library for other runtime firmware implementations

Used on EDK2 (EFI Runtime firmware)
Can be used for static partitioning of the system (OpenSBI Domains)

Other implementations of the SBI spec
● Hypervisors (to provide SBI for their guests):

○ KVM, Xvisor, Diosix
● RustSBI
● Coffer (Secure monitor)

Useful links:
https://github.com/riscv-software-src/opensbi
https://github.com/xvisor/xvisor
https://diosix.org/
https://github.com/rustsbi/rustsbi
https://github.com/jwnhy/coffer

https://github.com/riscv-software-src/opensbi
https://github.com/xvisor/xvisor
https://diosix.org/
https://github.com/rustsbi/rustsbi
https://github.com/jwnhy/coffer

Current status of the
RISC-V Linux port

The RISC-V Linux port

17

● Git repository:
○ https://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux.git

● Documentation:
○ https://docs.kernel.org/riscv/index.html

● Use a recent gcc toolchain:
○ E.g.: https://github.com/riscv-collab/riscv-gnu-toolchain

● Supported systems on mainline:
○ QEMU RISC-V Virt machine
○ SiFive Hifive Unleashed / Unmatched
○ PolarFire SoC FPGA Icicle Kit
○ Kendryte 210 (NOMMU, Linux runs on M-mode)
○ Allwinner D1 (Work in Progress)

● Supported systems with custom patches
○ LowRISC
○ Beagle-V
○ …

https://git.kernel.org/pub/scm/linux/kernel/git/riscv/linux.git/
https://docs.kernel.org/riscv/index.html
https://github.com/riscv-collab/riscv-gnu-toolchain

The evolution of /arch/riscv

18

RISC-V Extension support

19

Virtual memory extensions:

● Sv32, Sv39 / Sv32x4, Sv39x4 supported
● Sv48 / Sv48x4 supported (Alex Ghiti, Anup Patel)
● Sv57 / Sv57x4 supported (Qinglin Pan, Anup Patel)
● ASID allocator supported (Anup Patel)
● Page-based memory types (Svpbmt) submitted (v9 Heiko Stuebner)
● Fast TLB invalidation (Svinval) submitted (v2 Mayuresh Chitale)
● NAPOT pages (Svnapot) submitted (v1 Qinglin Pan)

H(ypervisor) extension supported (Anup Patel)

V(ector) extension submitted (v9 Greentime Hu, Guo Ren, Vincent Chen)

S and VS level Time Compare (Sstc) submitted (v3 Atish Patra, also v2 on OpenSBI)

Cache Management Operations Base (Zicbo*) submitted (v1 Heiko Stuebner -waiting for toolchain support)

Profiling through PMU (including Sscofpmf) supported (Atish Patra)

Pending:

● Scalar crypto support on CryptoAPI
● Arch-specific RNG (Zkr from scalar crypto)

Linux features support

20

Feature status (30/42): https://docs.kernel.org/riscv/features.html

Work in progress:

● Queued RWlocks submitted (v4 Palmer Dabbelt)
● HAVE_ARCH_HUGE_VMAP (v2 Liu Shixin, also part of Svnapot patchset)

Supported features not included on features list:

● CPU Idle, CPU Hot Plugging (through SBI HSM) (Anup Patel, Atish Patra)
● kexec/kdump (Nick Kossifidis)
● Alternatives framework (Vincent Chen, Heiko Stuebner)
● Restartable Sequences (RSEQ) (Vincent Chen)
● Strict kernel/module RWX (Zong Li, Jisheng Zhang)
● XIP image (Alex Ghiti)
● NOMMU support (userspace is WiP) (Christoph Hellwig)
● NUMA (Greentime Hu)
● EFI Stub (Atish Patra)
● …

https://docs.kernel.org/riscv/features.html

The development
process…

It’s a challenge for everyone involved

22

RISC-V is a unique architecture

We are not one company that has control over the whole process

Everything happens in parallel, the spec, the simulators, the toolchain etc

We have limited hardware to play with, development happens mostly on QEMU

Due to the modular nature of RISC-V we need to support all possible configurations

We need to support vendor extensions on top of standard extensions

We need to handle hw errata in sw

We need to be able to provide one image that boots everywhere

But things are getting better

Check out the talks from Philipp Tomsich and Mark Himelstein on Thursday

A few examples to get an idea

23

Cache management operations & Page-based memory types

Vector support

Kendryte 210 draft MMU

Allwinner D1 noncompliant Sv39

A few examples from EPAC to get an idea

24

Unique memory layout

Device tree outside of linear mapping

1:1 physical/virtual mapping (used for Sv48/Sv57 detection) is invalid in our case

Kdump worked fine on QEMU but not on HiFive boards

For more information on EPAC check out tomorrow’s talk from Jesús Labarta

The Accelerator Tile of European Processor Initiative

https://open-src-soc.org/2022-05/program-riscv-meeting.html#LABARTA

Alternatives and static keys

25

Alternatives framework:

Provide alternative assembly code snippets that can override the default implementation

through in-memory live patching of the kernel image.

Example:

Implement standard page-based memory types on supported implementations

Implement custom Allwinner D1 equivalent

Static keys:

Same concept of live patching but focused on branches

The heroes…

26

Top 10 contributors:

1. 97 Atish Patra
2. 91 Palmer Dabbelt
3. 87 Christoph Hellwig
4. 84 Anup Patel
5. 60 Jisheng Zhang
6. 59 Kefeng Wang
7. 55 Zong Li
8. 54 Alexandre Ghiti
9. 37 Vincent Chen

10. 30 Damien Le Moal

Next steps…

Upcoming features

28

IOMMU

Check out RISC-V IOMMU Architecture Overview from Perrine Peresse on Thursday

Secure Boot / Root of trust

Vector crypto

AP-TEE architecture

MPU

IOPMP

Check out RISC-V : Securing the Future of Open Source Computing from Andrew Dellow on Thursday

And many more

Check out State of the Union & the Road Ahead from Mark Himelstein on Thursday

https://open-src-soc.org/2022-05/program-riscv-international-day.html#PERESSE
https://open-src-soc.org/2022-05/program-riscv-international-day.html#DELLOW
https://open-src-soc.org/2022-05/program-riscv-international-day.html#HIMELSTEIN

Questions ?

Thank you !

