
Pipeline Datapath Models from RISC-V based cores
Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet and Mathieu Jan

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
samira.aitbensaid@cea.fr, mihail.asavoae@cea.fr, farhat.thabet@cea.fr, mathieu.jan@cea.fr

• Safety-critical systems rely on the use of timing analyses un-
der architecture considerations to estimate Worst-Case Exe-
cution Times (WCET).

• Such architecture models generally built by hand in WCET
analyzers, while using the open hardware frameworks [2] its
automation could be possible.

• Generating hardware models for timing analysis have Ver-
ilog/VHDL designs [3]. However, hardware designers tend
to use higher-level and more expressive languages, such as
Chisel.

Motivation

• Automatic construction of datapath pipeline model from
high-level hardware designs [1].

• Evaluation of the approach on in-order RISC-V processors.

Contributions

• Pipeline analysis algorithm:

– Identified the processor registers.
– Explore the combinatorial and sequential logics to build the registers context.
– Build the dependency relations between registers.
– Assign to each register its pipeline stage based on two rules:

∗ Rule 1: register dependencies.
∗ Rule 2: based on a heuristic "when" conditional block.

– Deduce the pipeline depth and construct the pipeline datapath model.

Listing 1: Chisel registers updates in when conditional block
1 Class DatPath :
2
3 val dec_pc = RegInit (size)
4 val exe_pc = RegInit (size)
5 val exe_rs2_data = Reg (size)
6 val dec_rs2_data = Wire (size)
7
8 when (C4) {
9 exe_pc := dec_pc

10 exe_rs2_data := dec_rs2_data
11 }

Pipeline datapath analysis

• RISC-V Sodor [4] processor is Chisel [5] based processor and we consider its 5-stage version.

if_pc

Fetch

dec_pc

dec_inst

Write-Back

ex_pc

ex_alu_op1

ex_alu_op2

RF

ex_rs2_data

mem_pc

mem_alu_out

mem_rs2_data

wb_wbdata

MemoryExecuteDecode

IM

DM

Rule

Rule

Rule

1

2

1

Reg Rule #Stage
if_pc - 1

dec_pc 1 2
ex_pc 1 3

mem_pc 1 4
dec_inst 2 2

ex_alu_op1 2 3
ex_alu_op2 2 3
ex_rs2_data 2 3

mem_alu_out 1 4
mem_rs2_data 1 4

wb_wbdata 1 5

Illustration on RISC-V SODOR 5-stages processor

• An application of the analysis on a set of in-order RISC-V
processors: 3 to 5 stages.

LOC #Regs Rule 1 Rule 2 #Stage
RISC-V Mini 241 15 5 10 3

Sodor 646 48 34 14 5
KyogenRV 4567 93 47 36 5

Experimental results on RISC-V processor designs

• Develop an extended analysis for multi-modular datapath
pipelines and out-of-order processors.

• Generate the abstract formal models to verify timing proper-
ties.

Perspectives

[1] Bensaid, S.A., Asavoae, M., Thabet, F., Jan, M.: WiP: Automatic Construction of Pipeline Datapaths from High-Level HDL Code. In: RTASS (2022).
[2] Izraelevitz, A.M., Koenig, J., Li, P., Lin, R., Wang, A., Magyar, A., Kim, D., Schmidt, C., Markley, C., Lawson, J., Bachrach, J.: Reusability is FIRRTL ground: Hardware construction

languages, compiler frame- works, and transformations. In: ICCAD. pp. 209–216 (2017).
[3] Charv at, L., Smrcka, A., Vojnar, T.: HADES: microprocessor hazard analysis via formal verification of parameterized systems. In: MEMICS. EPTCS, vol. 233, pp. 87–93 (2016).
[4] Risc-v sodor. https://github.com/ucb-bar/riscv-sodor.
[5] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Aviˇzienis, R., Wawrzynek, J., Asanovi c, K.: Chisel: Constructing hardware in a scala embedded language. In: DAC. p.

1216–1225 (2012).

Bibliographie


